

RNA DNA

In the much simpler world of the Internet, the details are still bewilderingly complex.

More details in application software

We'd need to look at the entire industry.

More details about the hardware design and supply chain

An understanding of architecture is essential to making any sense of this.

Architecture= Constraints

System-level

Aim: a universal taxonomy of complex systems and theories

Protocols

Component

- Describe systems/components in terms of constraints on what is possible
- Decompose constraints into component, systemlevel, protocols, and emergent
- Not necessarily unique, but hopefully illuminating nonetheless

Hard constraints:
Thermo (Carnot)
Info (Shannon)
Control (Bode)
Compute (Turing)

Protocols

Constraints

Components and materials: Energy, moieties

Essential ideas

Listening to engineers and physicians

- Robust yet fragile (RYF)
- "Constraints that deconstrain" (G&K)

- Network architecture
- Layering
- Control and dynamics (C&D)
- Hourglasses and Bowties
- Unity and diversity

Systems requirements: functional, efficient, robust, evolvable

Emergent Silver Constraints

Hard constraints:
Thermo (Carnot)
Info (Shannon)
Control (Bode)
Compute (Turing)

Protocols

Components and materials: Energy, moieties

Are there universal laws?

Emergent Constraints

Hard constraints:
Thermo (Carnot)
Info (Shannon)
Control (Bode)
Compute (Turing)

No networks

Assume different architectures a priori.

New unifications are encouraging, but not yet accessible or complete.

Robust Yet Fragile (RYF)

[a system] can have[a property] *robust* for[a set of perturbations]

Yet be *fragile* for [a different property]
Or [a different perturbation]

Proposition:

The RYF tradeoff is a *hard limit* that cannot be overcome.

Cyber

Physical

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Theorems:

RYF tradeoffs are hard limits

Robust yet fragile

Biology and advanced tech nets show extremes

- Robust Yet Fragile
- Simplicity and complexity
- Unity and diversity
- Evolvable and frozen

What makes this possible and/ or inevitable?

Architecture (= constraints)

Let's dig deeper.

More details in applications

We'd need to look at an entire industry.

More details about the hardware design and supply chain

An understanding of architecture is essential to making any sense of this.

Is there a simpler example than Internet?

∃ devil ∈ details ⇒ ⊗ architecture Jean Jour (alias John Day)

Other examples

Clothing

System constraints

Jacket Tie Shirt

Coat Shoes Slacks

Socks

Robust to variations in

- weather
- activity
- appearance requirements
- wear and tear
- cleaning

Wool Cotton Silk Polyester Nylon Rayon

Component constraints

Robust to

- perturbations to clothing
- variety of raw materials
- unraveling

Component constraints

Horizontal networks of garments

Horizontal networks of fibers

Universal functions?

- Transfer or transform (fastest)
 - Domain specific (data, power, goods, etc)
 - Depends on demand and supply
- Control (middle)
 - Schedule/MUX resources in time and space
 - Flow and error control
- Management (slowest)
 - What resources are available?
 - Where are they?
 - Cost? Risk? etc

Sewing function?

- Transfer or transform (fastest)
 - Transform cloth to garments
 - Depends on demand and supply
- Control (middle)
 - Schedule/MUX resources in time and space
 - Flow and error control
- Management (slowest)
 - What resources are available?
 - Where are they?
 - Cost? Risk? etc

- Ctrl and Mgmt just aspects of a single problem on different time scales
- The distinction may be somewhat artificial and domain specific
- Ctrl/Mgmt in NetME:
 - More complex as the "Net" part grows
 - Will be our focus/goal of a unified theory
 - From physics to information to computation to control

Domain specific, local

Xform

Universal functions?

Universal strategies?

Even though garments seem analog/continuous

Garments

Garments have limited access to threads and fibers

quantization for robustness

Cloth

Xform

Xform

Fiber

constraints on cross-layer interactions

Prevents unraveling of lower layers

Scalable

Sustainable?

Functionally diverse garments

Money

New fragilities

- Theft, counterfeiting, fraud, and "creative accounting" are now possible
- The beginning of a growing complexity-fragility spiral
- Complex legal infrastructure
- Law, banking, finance, Ponzi schemes, derivatives, credit default swaps, ...

Lego hourglass

Diverse toys

control

Universal Control

assembly

Diverse instructions

Robust yet fragile

Extremes of

- Robust yet fragile
- Simplicity and complexity
- Constrained and flexible
- Frozen and evolvable
- Digital and analog
- Diverse and conserved

Lego system requirements

	Alternative designs?			
Performance				
Trauma				
Allowed connections				
Reuse				
Evolvable parts				
Evolvable systems				
Labor cost				
Parts cost				

Alternatives

Standard interface. (Wild type.)

Add glue to hold the parts together.

Injection mold the whole toy from scratch.

For a single toy

Lego hourglass

control

assembly

Analog behavior Kinematics Dynamics

Toy system

Lego hourglass

Huge variety of toys

Standardized mechanisms
Highly conserved

control

assembly

Huge variety of instructions

Lego hourglass

Huge variety of toys

control

Standardized mechanisms

Highly conserv

Arge

Variety of parts

of instructions

Instructions

RNA

Frozen and evolvable

Digital and analog

Flow/erro

DNA level

Diverse

Lessons from Lego:

- Infinitely diverse toys from
- moderately diverse parts
- Hourglass organization of control
- Conserved control mechanisms
- Bowties within layers
- Complexity is overwhelmingly in conserved control parts, but
- largely hidden in ordinary operation
- Greater internal complexity means more *robust yet fragile* external behavior

Diverse

Diverse inputs

universal carriers Diverse inputs

Layers of bowties

We'll come back to this aspect later.

Why bowties?

- Metabolism, biosynthesis, assembly
 - 1. Carriers: Charging carriers in central metabolism
 - 2. *Precursors*: Biosynthesis of precursors and building blocks
 - 3. Trans*: DNA replication, transcription, and translation
- Signal transduction
 - 4. 2CST: Two-component signal transduction

Transmitter Receiver

- 1. Carriers
- 2. Precursors
- 3. Trans*
- 4. 2CST

Precursors

Carriers

Trans*

Transmitter Receiver

Constraints

Precursors

Carriers

Trans*

Need a more coherent cartoon to visualize how these fit together.

specific, local

to computation to control

Flow/error

Protein level

Translation

Flow/error

Peculision

RNA level

Transcription

low/error

DNA level

Diverse Reactions

Flow/error

Protein level

Conserved core control

Reactions
Translation
KNA level

Transcription Flow/error

DNA

DNA

DNA

Diverse Genomes

Flow/err

Protein level

Layering revisited

TCA

More complete picture

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Layering, modularity
- Hourglass with bowties
- Dynamics
- Feedback
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >3B years of evolution

Flow/error

Protein level

Translation

Flow/error

Peculision

RNA level

Transcription

low/error

DNA level

Flow/error

Protein level

Translation

Flow/error

RNA level

Transc.

Flow/error

DNA

Flow/error

Protein level

Translation

Flow/error

RNA level

Transc.

Flow/error

DNA

This is all part of controlling protein *level*

This is all part of controlling protein level

mRNA activity is actively controlled.

All at the DNA layer

fan-in of diverse inputs

Essential ideas

Universal Control

Diverse

function

Diverse components Robust yet fragile

Constraints that deconstrain

fan-out

outputs

Robust yet fragile

Constraints that deconstrain

fan-in of diverse inputs

fan-out of diverse outputs

Diverse function

Universal Control

Diverse components

Essential ideas

Robust yet fragile

Constraints that deconstrain

What theory is relevant to these more complex feedback systems?

$$\frac{1}{\pi} \int_{0}^{\infty} \ln |S(j\omega)| \frac{z}{z^{2} + \omega^{2}} d\omega \ge \ln \left| \frac{z + p}{z - p} \right|$$

New fragilities

- Theft, counterfeiting, fraud, and "creative accounting" are now possible
- Need complex legal infrastructure to protect
- The beginning of a growing complexity-fragility spiral

